首页    如何提高换热器的换热系数?

完整全部详细资料  ▼

电话:15853332398

公司经典设计案例

免责声明:本网站部分内容来源于合作媒体、企业机构、网友提供和互联网的公开资料等,仅供参考。本网站对站内所有资讯的内容、观点保持中立,不对内容的准确性、可靠性或完整性提供任何明示或暗示的保证。如果有侵权等问题,请及时联系我们,我们将在收到通知后第一时间妥善处理该部分内容。

如何提高换热器的换热系数?

看点01:换热器的定义

换热器是将热流体的部分热量传递给冷流体的设备,即在一个大的密闭容器内装上水或其他介质,而在容器内有管道穿过。让热水从管道内流过。

由于管道内热水和容器内冷热水的温度差,会形成热交换,也就是初中物理的热平衡,高温物体的热量总是向低温物体传递,这样就把管道里水的热量交换给了容器内的冷水,换热器又称热交换器。

 

换热器(heat exchanger),是将热流体的部分热量传递给冷流体的设备,又称热交换器。换热器在化工、石油、动力、食品及其它许多工业生产中占有重要地位,其在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用广泛。

 

 

看点02:换热器的分类与结构

换热器按用途分类可以分为:

冷却器、冷凝器、加热器、换热器、再沸器、蒸气发生器、废热(或余热)锅炉。

按换热方式可以分为:

直接接触式换热器(又叫混合式换热器)、蓄热式换热器和间壁式换热器。

 

那么如何提高换热器的换热系数呢?

 

改变流体的流动情况

(1)增加流速  

增加流速可改变流动状态,并提高湍流脉动程度。如管壳式热交换器中管程、壳程的分程就是加大流速、增加流程长度和扰动的措施之一。管内湍流时增加流速对增强传热能收到较显著的效果,但又须注意增加流速也受到各种因素的限制。因此,在设计或实际使用中应权衡各种因素,选择最佳流速或为流体输送机械所允许的流速。

(2)射流冲击  

这是使流体通过圆形或狭缝形喷嘴直接喷射到固体表面进行冷却或加热的方法。由于流体直接冲击固体壁面,流程短而边界层薄,所以对流换热系数显著增大。在用液体射流冲击加热面时,如热流密度已高至足以产生沸腾,则就成为两相射流冲击换热。实验表明,此时不但可提高沸腾换热系数,而且可使烧毁点推迟,显著提高临界热流值。

(3)加插入物  

在管内安放或管外套装如金属丝、金属螺旋圈环、盘状构件、麻花铁、翼形物等多种型式的插入物,可增强扰动、破坏流动边界层而使传热增加。如用薄金属条片扭转而成的麻花铁扰流子插入管内后,使流体形成一股强烈的旋转流而增强换热。插入时若能紧密接触管壁,则尚能起到翅片的作用,扩展传热面。大量的试验研究表明,加插入物对受迫对流换热等有显著增强的作用,但也会产生流动阻力增加、通道易堵塞与结垢等运行上的问题。在使用插入物时应沿管道的全段流程,以保持全流程上的强化传热。而且,在选择插入物的形式时,应考虑到在小阻力下增强传热。

(4)加旋转流动装置  

旋转流动的离心力作用将使流体产生二次环流,因而会强化传热。上述的某些插入物,如麻花铁、金属螺旋丝等,除其本身特点外,也都能产生旋转流动。在此要提及的是一些专门产生旋转流动的元件或装置。例如,涡流发生器,它能使流体在一定压力下以切线方向进入管内作剧烈的旋转运动。研究表明,涡旋强化传热的程度与雷诺数有关。在一定的热源温度下,对流换热系数随着Re值而增加,且将达到某一个最大值然后下降。在应用上应控制实际的Re值接近于使对流换热系数达最大时的临界Re值,以充分利用旋转流动的效果。除了流体转动外,也有传热面转动的情况,当管道绕不同轴线旋转时利用其离心力、切应力、重力和浮力等所产生的二次环流可促使传热强化。管道旋转对层流放热的强化效果显著,而湍流时效果不明显。过冷沸腾与大空间沸腾的试验表明,对于带有螺旋斜面和切向槽涡流发生器的管道,可使沸腾换热系数或临界热负荷得到提高。

(5)依靠外来能量作用    

大体上有三方面措施:

①用机械或电的方法使传热表面或流体发生振动或通过搅拌使流体很好地混合。试验表明,振动对于自由流动换热、受迫流动换热均有一定效果。对于沸腾换热的效果不明显,但在流体振动时对于旺盛的大空间沸腾,可使临界热负荷显著提高。此法对大型换热设备,在具体应用上有一定困难。利用机械传动带动搅拌器,通过流体的良好混合来强化对流换热,效果显著,故应用较广,尤其对于高黏度的流体。

②对流体施加声波或超声波,使之交替地受到压缩和膨胀,以增加脉动而强化传热。综合各研究者试验研究结果显示出,对于液体或气体,只有处于管内层流或过渡流时,声波作用才较明显。对于大空间泡状沸腾的换热影响极微,而对于过渡沸腾或膜态沸腾的换热改善较为显著。对于凝结换热及自由流动换热均有一定效果。在声波强化措施的实用中,要注意解决如何更有效地将声振动或超声振动传送至换热设备内部的问题。③电磁场作用。对于参与换热的流体加以高电压而形成一个非均匀的径向电场,这样的静电场能引起传热面附近电介质流体的混合作用,因而使对流换热加强。试验表明对于自由流动换热、膜状沸腾换热、凝结换热的强化效果均较显著。如果在流体中掺入磁铁粉,则即使在较大的Re数下,磁场也能对换热起强化作用。如,在水或油中掺入磁铁粉,在磁场的作用下,可使换热系数提高50%以上。

 

改交流体的物性

流体的物性对对流换热系数有较大的影响,一般导热系数与容积比热较大的流体,其换热系数也较大。例如冷却设备中用水冷比风冷的体积可减小很多,因为空气与壁面间的α值在1~60 W/(m2·℃)范围内,而水与壁面间的α值在200~12000 W/(m2·℃)范围内。改变流体某些性能的另一种方法是在流体内加入一些添加剂,这是近二三十年来形成的添加剂强化传热研究的新课题。添加剂可以是固体或液体,它与换热流体组合成气-固、液-固、汽-液以及液-液混合流动系统。

改交换热表面情况

换热表面的性质、形状、大小都对对流换热系数有很大影响,通常可通过以下方法增强传热:

(1)增加壁面粗糙度  

增加壁面粗糙度不仅有利于管内受迫流动换热,也有利于沸腾和凝结换热及管外受迫流动换热。同样的粗糙度在不同流动及换热条件下,对传热效果的影响是不同的。增加粗糙度也会带来流动阻力的增加,在工业应用中应予考虑。

(2)改变换热面形状和大小    

为了增大对流换热系数,亦可采用各种异形管和表面开槽等,如椭圆管、螺旋管、波纹管、变截面管及纵槽管等。椭圆管在相同截面积下当量直径小于圆管,故换热系数大。其他异形管除传热面积略有增大外,由于表面形状的变化,流体在流动中将会不断改变方向和速度,促使湍流程度加强,边界层厚度减薄,故能加强传热。对低肋螺纹管,在凝结换热时还具有减薄冷凝膜的作用,对于有机工质的冷凝(氟利昂等)用低肋螺纹管很有利。在低肋管基础上发展而成的微细肋管,则更有利于氟利昂等低沸点有机介质的冷凝换热,如日本的C管,我国的DAC管。对于垂直凝结时,如使用纵槽管,则由于液体的表面张力把波峰处凝液拉入波谷,在波峰处形成极薄凝液膜,而波谷又排泄凝液,故使凝结换热强化。

(3)改进表面结构  

对金属管进行烧结、电火花加工或切削,使之管表面形成一层很薄的多孔金属层而构成多孔管,可以增强沸腾和凝结换热。如:用于沸腾换热的美国的高热流管,日本的E型管,德国的T型管,我国的DAE管等。此外还有,如在沸腾换热液体中,把一块多孔物体置于加热表面上,靠通过这种多孔加热面连续地移走蒸汽,即所谓“吸入”的办法,因而使膜状沸腾换热得到改善。

(4)表面涂层

在凝结换热时,可在换热表面涂上一层表面张力小的材料,如聚四氟乙烯等以造成珠状凝结,有利于增大换热系数。对于沸腾换热,可根据受热液体的物性,在加热面上涂以适当厚度的某种物质的薄膜,使之成为非润湿表面,则可明显提高沸腾换热系数。在太阳能利用中,在集热器的吸热表面上涂以选择性物质薄层,以提高其对太阳光的吸收率和降低其发射率,达到增强对辐射热的吸收和减少辐射热损失的目的。

发布时间:2022-09-29