氢能工业现状、技术进展、挑战及前景
作者简介:邹才能,中国科学院院士,正高级工程师,李四光地质科学奖获得者;现任中国石油天然气集团有限公司新能源首席专家、中国石油深圳新能源研究院院长;主要从事常规、非常规油气地质学理论与实践以及能源发展战略方面的研究工作
目前主要的甲烷制氢技术路线及其优缺点对比如表1所示。从表1可以看出:①SRM是在750~920 ℃高温和3.5 MPa高压条件下,使用Ni/Al2O3催化剂,将甲烷和蒸汽催化转化为氢气和碳氧化物[2],该工艺主要包括重整气或合成气的生成,水煤气变换(WGS)和气体净化等主要步骤,技术成熟;②POM是将蒸汽、氧气和甲烷转化为氢气和碳氧化物,根据与氧气或蒸汽的反应分为催化与非催化重整,在催化过程中,热量由受控燃烧提供,甲烷的热效率通常介于60%~75%[3];③MATR是将放热的POM 反应与吸热的SRM反应联用,通过反应体系自供热来增加氢气产量,降低成本[4];④在MCD反应中,氢气的唯一来源便是甲烷本身,无需另外引入蒸汽和氧气,不会产生碳排放量且能耗更低[5]。综上可知,以SRM为基础,协同发展POM、MATR和MCD,借助于高活性催化剂研发、反应装置改进等方面的技术突破,体现效率与经济性的综合优势,是甲烷制氢技术发展的趋势。
表1:主要甲烷制氢技木路线及其优缺点对比表

煤制氢主要工艺是将煤与氧气或蒸汽混合,在高温下转化为以H2和CO为主的混合气,后经水煤气变换(WGS)、脱除酸气、氢气提纯等流程,获得具有高纯度的氢气产品[6]。煤气化制氢过程中主要发生的有效反应如下:

在煤气化制氢的WGS变换步骤中,不仅需要催化剂具有可靠的活性和寿命,而且由于煤中含有硫元素,对催化剂的抗硫能力亦提出了额外的要求。采用Co-Mo催化剂体系的宽温耐硫变换工艺具有卓越的抗硫能力与宽适用温度范围(200~550 ℃),目前被广泛用于煤气化制氢系统中。经WGS 变换后,气体产物主要通过低能耗的低温甲醇清洗,同时实现对CO2和含硫气体的脱除。

反应热力学和反应机理的研究结果证实,该反应是通过甲醇裂解与WGS变换两步反应完成的:

甲醇蒸汽重整全流程需要吸收大量的热量,必须保证外部热源平稳供热。适用于该技术的催化剂种类则较为丰富,主要有镍系、钯系、铜系等几大类型,例如Cu-Zn-Al、Cu-Ni-Al体系等。对于氢气产物,可以通过变压吸附法、WGS变换反应、钯膜分离技术、CO甲烷化等方式除去其中的CO进行纯化。
![]()
氯碱产氢反应的化学原理和生产过程与电解水制氢类似,氢气纯度可达98.5%,其中主要杂质为反应过程中混入的氯气、氧气、氯化氢、氮气以及水蒸气等,一般通过PSA技术进行纯化分离获得高纯度氢气[31]。大型先进氯碱装置的产氢成本可以控制在1.3~1.5元/Nm3,成本接近于煤炭、天然气等化石能源制氢。但从CO2气体减排效果进行分析,氯碱副产氢全生命周期CO2气体排放量为1.3~9.8 kg(CO2)/kg(H2),比SRM制氢技术低了20%~90%,CO2减排优势显著[33]。氯碱副产氢具有产品纯度高、原料丰富、技术成熟、减排效益高以及开发空间大等优势。大力发展对这类工业副产氢的纯化与利用,可以使氯碱企业加入到氢能行业的发展潮流中,走上从耗能到造能的转变之路。

丙烷脱氢工艺一般在循环流化床或固定床反应器中进行,只需配套相应的PSA或膜分离装置,即可得到高纯度氢气(含量大于等于99.999%)。以年产60×104 t规模的丙烷脱氢生产线为例,其副产粗氢量大约可达3.33×108 Nm3。预期到2023年,国内的丙烷脱氢副产氢规模可达44.54×104 t/a。从丙烷脱氢工艺产出的氢气无需额外的制氢原料,并且氢气净化再投入也相对较少,因而具有较好的成本优势,成本可以控制在0.89~1.43元/Nm3的水平[30]。随着丙烷脱氢工艺的持续发展和成本的逐步降低,该技术在丙烯合成工业上的占比也将日益加大。此外,随着例如乙烷高温裂解脱氢合成乙烯等石化副产氢工艺的逐渐发展,协同各类新型气体分离与纯化技术,这类工业副产氢的利用将愈发凸显价值[34]。

光解水制氢的关键在于光催化剂的开发设计,其需同时兼具高光吸收效率、快载流子分离、高表面催化活性及长效光化学稳定性。日本在光催化制氢技术研究领域中最为领先,东京大学Domen团队近期开展了一项100 m2规模的太阳能光催化水制氢示范研究,可在数月内安全运行。中国石油勘探开发研究院与泊菲莱科技公司合作,开发了一套可以稳定运行的5 m2级光解水反应系统,达到国内领先水平。而在基础研究方面,国内外差距不大。近年来研究者们已在光催化剂的基础研究方面取得了一些进展,例如,Liu等[37]在TiO2上实现了铜单原子的大规模高分散负载(质量分数超过1%),其在光解水反应中具有101.7 mmol/(g· h)的H2生成速率,并在365 nm处表现出高达56%的表观量子效率。Domen等[38] 设计并制备了一种改性铝掺杂钛酸锶 (SrTiO3:Al)催化剂,在350~360 nm波长光照下实现了具有高达96%量子产率的光解水反应。然而,目前最好的光催化制氢效率仅在4%左右,离实际应用还存在着一定的距离。

光电催化制氢技术的关键在于寻求具有适宜禁带宽度、灵敏光响应、高表面活性的半导体光电极催化材料。另外,借助于对光电化学池结构的设计与改进、电解液配方的优化、助催化剂的引入等途径,也是提高光电催化制氢效率的主要研究方向[41]。同光催化制氢一样,光电催化制氢仍然停留在实验室基础研究阶段。日本在该领域研究时间最长、技术最为领先。国内如中国科学院赵进才院士、李灿院士等团队在光电解水制氢研究方向上亦达到了世界前沿水平。例如,Li等[42] 使用梯度Mg掺杂来提高Ta3N5材料的电荷分离效率,实现了0.4 V的低起始电位与3.25±0.05%的高光电效率。李灿院士团队[43] 设计了一种Co4O4/pGO/BiVO4/SnOx复合材料作为光阳极,与有机聚合物PBDB-T:ITIC:PC71BM光阴极联用得到高达4.3%的产氢效率。尽管光电催化制氢技术还未达到产氢效率10%的商业化应用要求,但其仍然是绿氢制备领域的一个重要前沿研究热点。

针对各类制氢技术在氢能行业的发展布局与规划,应当综合考虑技术水平、碳排放量和产氢成本这3个方面的因素,稳步推进从灰氢到蓝氢再到绿氢的转变,铸就低碳环保的氢能行业基石,支撑起氢能全产业链发展,助力构建“氢能中国”。
固态金属氢化物储运氢是利用储氢合金在一定温度和压力条件下的可逆吸/放氢反应来实现氢气储运的。氢在储氢合金表面分解为氢原子,扩散进入合金内部与其发生反应生成金属氢化物,氢即以原子态储存在金属内的四面体与八面体间隙位置 [59]。金属氢化物具有储氢体积密度大、安全、氢气纯度高、操作容易、运输方便、成本较低等优势。固态金属储氢的商业应用主要为潜艇、核电站、发电站、加氢站、便携式测试设备等(表3),如德国 GKN Hydrogen公司有10~265 kg不同型号的固态储氢系统,可低压运行并100%可回收,无容量损失(材料消耗)等优势;美国ECD Ovonic公司采用轻质碳纤维包卷形成的储氢罐,所含的金属氢化物可储存约3 kg的氢气;丰田公司的氢动力汽车均采用了ECD Ovonic公司的技术。目前,国内金属氢化物储氢应用还较少,正处于研发与示范阶段,提高金属氢化物的储氢量、降低材料成本、提高金属氢化物的可循环性等将是未来的研究重点[60]。
表3:古态金属储氢应用项日统计表


图1 几种储运技术成本与运输距离关系图
图2 液氨与LOHC终端氢气转化成本图

图3 以绿氢为核心的氢能全产业链示意图
(资料来源:本文参考文献[92] )
